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Computational and biological systems are often distributed so that processors (cells) jointly solve
a task, without any of them receiving all inputs or observing all outputs. Maximal independent
set (MIS) selection is a fundamental distributed computing procedure that seeks to elect a set of
local leaders in a network. A variant of this problem is solved during the development of the
fly’s nervous system, when sensory organ precursor (SOP) cells are chosen. By studying SOP
selection, we derived a fast algorithm for MIS selection that combines two attractive features. First,
processors do not need to know their degree; second, it has an optimal message complexity
while only using one-bit messages. Our findings suggest that simple and efficient algorithms
can be developed on the basis of biologically derived insights.

Computational and mathematical methods
are extensively used to analyze and mod-
el biological systems (1–3). We provide

an example of the reverse of this strategy, in
which a biological process is used to derive a so-
lution to a long-standing computational problem.

In distributed computing, a large number
of processors jointly and distributively solve
a task, without any of the processors getting
all of the inputs or observing all of the outputs
(4). All large-scale computing efforts, from
web search to airplane control systems, use
distributed computing algorithms to reach agree-
ment, overcome failures, and decrease response
times. Biological processes are also distrib-
uted. Parallel pathways are used to transform
environmental signals to gene expression programs,
and several tasks are jointly performed by
independent cells without clear central control.

A long-standing distributed computing prob-
lem is that of electing a set of local leaders [the
maximal independent set (MIS)] in a network
of connected processors (4). The MIS is used
to determine a backbone for wireless networks,
for routing, and in several other network pro-
tocols (5). Formally, a MIS is defined as a set
of processors (nodes) A so that every node in
the network is either in A or directly connected
to a node in A, and no two nodes in A are con-
nected (Fig. 1A). Distributively electing a MIS
has been considered a challenging problem for
three decades (6). In particular, when all nodes
are initially identical constructing a MIS by using
deterministic algorithms is impossible (7), neces-
sitating probabilistic approaches. Luby (8) and
Alon et al. (9) presented fast probabilistic algo-
rithms for electing a MIS. In these algorithms,

nodes change their probability of being elected
based on the number of active neighbors they
have (nodes that are not yet connected to nodes
in A), and they require processors to send mes-
sages the sizes of which are a function of the num-
ber of nodes in the network. Recent methods were
proposed that partially remove either of these
assumptions (10, 11), but to date, no method has
been able to efficiently reduce message complex-
ity without assuming knowledge of the number
of neighbors. These are important requirements
for deployment of large, ad hoc sensor networks.

The selection of neural precursors during
the development of the nervous system resem-
bles the MIS election problem. The precursors
of the fly’s sensory bristles [sensory organ pre-
cursors (SOPs)] are selected during larvae and
pupae development from clusters of equivalent

cells. The selection of the small bristles pre-
cursors (microchaetes) (Fig. 1B) is initiated 8 to
10 hours after pupae formation, when several
elongated clusters of proneural cells, containing
between 20 and 30 cells each, appear at specific
positions in the imaginal discs, which will later
become the fly’s wings and notum. During the
next 3 hours, SOPs begin to appear within these
clusters. A cell that is selected as a SOP inhibits
its neighbors by expressing high levels of the
membrane-bound protein Delta, which binds
and activates the transmembrane receptor protein
Notch on adjacent cells (12). This lateral-inhibition
process is highly accurate (13), resulting in a
regularly spaced pattern in which each cell is
either selected as SOP or is inhibited by a neigh-
boring SOP (Fig. 1C). Thus, as in the MIS prob-
lem every proneural cluster must elect a set of
SOPs (A) so that every cell in the cluster is either
in A or connected to a SOP in A, and no two
SOPs in A are adjacent.

Extensive studies and mathematical model-
ing were used to define the molecular components
mediating SOP selection and the mechanism
underlying selection. These studies suggest sev-
eral similarities between the mechanism under-
lying SOP selection and current algorithms for
MIS election (14). First, the selection of a par-
ticular cell as a SOP is a random event governed
by an underlying stochastic process (15, 16).
Second, similar to computational requirements
SOP selection is probably constrained in time
because the default of all cluster cells is to be-
come SOPs unless they are inhibited (17). Lastly,
in computational algorithms (8, 9) processors
send messages only when they propose their
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Fig. 1. Computational and biological overview.
(A) Illustration of a MIS. Edges represent com-
munication channels. (Left) Processors in a net-
work are initially identical. (Right) Following a
MIS selection algorithm, a set of local leaders
(blue computers) is elected so that each com-
puter is either a local leader or connected to a
local leader. No two local leaders can be neigh-
bors in the network. (B) The notum of an adult
fly, presenting the typical pattern of small and
large bristles (microchaetes and macrochaetes,
respectively). Microchaetes are surrounded by a

dashed line. (C) Illustration of SOPs in flies. (Left) Cells in a cluster are initially equivalent. (Right) Following a
SOP selection process, selected SOPs (blue cells) inhibit their physical neighbors (red cells), and so for the
cluster depicted in this figure, no more SOPs can be selected.
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candidacy to become leaders, thus reducing com-
munication complexity. Mathematical model-
ing by us and others suggests that this might
also be the case during SOP selection: Before
being selected, the ability of Delta to activate
Notch on adjacent cells is inhibited by their
interaction within the same cell, enabling com-
munication between cells only after selection
(18–20).

Although similar, the biological solution dif-
fers from computational algorithms in at least
two aspects. First, SOP selection is probably
performed without relying on knowledge of
the number of neighbors that are not yet se-
lected. Second, mathematical analysis demon-
strated that SOP selection requires nonlinear
inhibition that in effect reduces communication

to the simplest set of possible messages (binary)
(21, 22).

These last two aspects of the biological pro-
cess are attractive because they could greatly
simplify applications of MIS selection. We thus
examined SOP selection more closely in order
to determine whether better understanding of
this process can lead to an efficient algorithm
for MIS selection. To verify the stochastic na-
ture of this process, we first monitored the in
vivo selection using a fluorescence reporter for
Notch activity (17). We focused on the selection
of SOPs in two symmetrical rows of pro-neural
clusters [the fifth rows of notum microchaetes
(Fig. 2A)], which occur before head eversion.
These clusters consist of 10 rows with two cells
each, giving rise to four SOPs per cluster. Mea-

suring the SOP selection times in 10 different
pupae (20 distinct clusters) revealed a bias for
early selection of the lowest SOP, probably re-
flecting an earlier initiation of this part of the
cluster. However, the upper three SOPs ap-
peared at seemingly random order (Fig. 2B),
supporting previous evidences for stochastic
selection (23).

A defining aspect of algorithms for MIS
selection is the per-round probability that a
node joins the MIS. Current algorithms (8, 9)
optimize this rate by dynamically increasing it
when the number of active neighbors a node
has decreases. During SOP selection, cells do
not know the number of nonselected neigh-
bors. However, the temporal selection rate may
still be optimized by cell-autonomous mecha-
nisms, for example by stochastically accumu-
lating a protein (such as Delta) until it passes
some threshold. Characterizing the stochastic
accumulation rate is thus a key for understand-
ing the biological selection strategy. To deter-
mine this rate, we compared statistics derived
from the observed SOP selection times with
several in silico stochastic accumulation mod-
els. The models differ in the way by which
stochasticity is introduced (14). Results of two
of these models were consistent with our ex-
perimental data (Fig. 3). The first consistent
model assumed a fixed rate of accumulation
over time, and we concluded that it is not ap-
propriate for computer networks (14). In con-
trast, the second model assumed a burst-like
protein production in which the likelihood of
bursting increases in time, resembling a com-

Fig. 2. Time-lapse imaging of no-
tum microchaetes SOPs selection
in a live pupa. (A) (Bottom) Time-
lapse imaging of notum micro-
chaetes SOPs selection in a live
pupa of hsflp; ma-dsRED;FRT80B,
ubi-NLS-GFP strainafter the selection
of the microchaetes SOPs at the
fifth row of the left and right
clusters (area surrounded by a
dashed white curve). (Top) Anno-
tated image highlighting the pro-
neural, inhibited, and selected
cells in the fifth row of the bottom
panels. Proneural clusters aremarked
with gray, SOPs with blue, and non-
SOPs with red. SOPs are identified
by the up-regulation of ma-dsRED
in adjacent cells. We followed the
selection process from 145 min
before head eversion (HE) to HE, corresponding to ~9.5 to 12 hours after pupa formation. (B and C)
Statistics of SOP selection order from time-lapse imaging of ten pupae. The y axis represents the movie
number. The x axis corresponds to the four SOPs selected in each row on the left and right sides (L1 to L4
and R1 to R4) ordered from bottom to top. Color in each (x, y) coordinate represents the order (1 to 4) in
which this SOP was selected (see color legend on the right) (C) Average and SD of SOP selection order for L1
to L4 and R1 to R4; x axis is the same as in (B).
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Fig. 3. Comparison of experimental and simu-
lated results. We computed the average ratio for
the difference between the selection times of
SOPs in the movies we analyzed. The dashed line
represents the average observed in our experi-
ments (1.98). We simulated four stochastic mod-
els. In the accumulation model, cells accumulate
random amounts of Delta at each step until
reaching a threshold. The fixed accumulation and
rate change models are described in the paper. In
the fixed rate model, cells use the same burst
distribution throughout the process (14). Values
are based on 20,000 runs for each model. Error
bars represent SD.
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putational algorithm for MIS in which the se-
lection probability also increases in time as
the number of active processors decreases. We
thus asked whether we can develop an algo-
rithm for MIS selection on the basis of this
stochastic rate change model that would not
require knowledge about the number of active
neighbors and would only use threshold (bi-
nary) communication.

We assumed a collection of identical pro-
cessors placed at nodes of an arbitrary syn-
chronous communication network. Nodes can
only broadcast one-bit messages. A message
broadcasted by a node reaches all of its neigh-
bors that are still active in the algorithm. In
each round, a processor can only tell whether
or not a message was sent to it. When a pro-
cessor receives a message, it cannot tell which
of its neighboring processors sent it, and it
cannot count the number of messages received
in a round. Hence, our model is appropriate for
radio networks with collision detection. We
assumed that nodes receive as input an upper
bound on the number of nodes in the network
(n) and an upper bound D, on the number of
neighbors any node can have (if no such bound
is known, we set D to n). We further assumed
that no failures occur. The algorithm, presented
in Table 1, is synchronously executed by all nodes.

The algorithm proceeds in log D phases,
each consisting of M log n steps, where M is a
constant; its value is given in (14). Initially, all
nodes are active. Each step in each phase i con-
sists of two exchanges. In the first exchange,
each active node broadcasts a message to its
neighbors with probability pi. Such as in the
biological model, the probability pi increases
with i. In the second exchange, a node that has
broadcasted a message in the first exchange
joins the MIS if none of its neighbors had
broadcasted at the first exchange. Such node
broadcasts again a message to its neighbors,
telling them to become inactive, and exit the
algorithm.

We proved that when the algorithm termi-
nates, no two neighboring nodes are in A (the

MIS set), and that every node that has become
inactive has a neighbor in A [the proof can be
found in (14)]. We thus conclude that the only
way the algorithm may err is by terminating
while leaving some nodes that are not in A and
are also not connected to nodes in A. Next, we
show that when the algorithm terminates all
nodes are, with high probability, either in A or
connected to a node in A, which solves the MIS
problem.

The proof and the complete analysis are
provided in (14). Briefly, the proof relies on
an inductive argument to show that with high
probability, by the time phase i ends (14) there
are no active nodes with more than D

2i
active

neighbors. Thus, nodes with many neighbors
either leave the algorithm (joining A or elim-
inating when a neighbor joins A) or lose many
of their neighbors at each phase as these neigh-
bors exit the algorithm. By the time the algo-
rithm ends, i equals log D, and so all nodes that
have not joined A are, with high probability, not
connected to any active node (and are also not
connected to any node in A) and thus can join A
with no collisions.

The running time of the algorithm is O(log n
log D), which is the number of rounds re-
quired to execute the two nested loops. The
worst-case running time is O(log2n). All mes-
sages in the algorithm are one bit. We prove in
(14) that the expected number of messages
sent to active nodes in our algorithm is linear
in the number of nodes of the network, which
is optimal because each node is required to at
least receive a message from its local leader.

Taken together, by studying a developmen-
tal process in flies we devised a solution to
an important distributed computing problem.
The new algorithm does not require knowl-
edge of the degree of individual processors,
uses one-bit messages, and has an optimal mes-
sage complexity. These features are useful for
many applications, including wireless commu-
nication systems and ad hoc sensor networks.

Biologists are increasingly relying on advanced
modeling techniques. The other direction—using

insights from biology to advance computational
systems—has mainly focused on optimization
techniques inspired by biological observations,
including neural networks, genetic algorithms,
and routing (24). We have shown that areas of
computer science that require strict, provable
guarantees can also benefit from knowledge
regarding how biological systems operate. Bet-
ter understanding of these biological systems
can lead to further improvement in the design
of complex distributed computing systems.
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Table 1. MIS algorithm.

1. Algorithm: MIS (n, D) at node u
2. For i = 0: log D

3. For j = 0: M log n // M is constant derived below
4. * exchange 1*
5. v = 0
6. With probability 1

2logD−i
broadcast B to neighbors and set v = 1 // B is one bit

7. If received message from neighbor, then v = 0
8. * exchange 2 *
9. If v = 1 then

10. Broadcast B; join MIS; exit the algorithm
11. Else

12. If received message B in this exchange, then mark node u inactive; exit the algorithm
13. End

14. End
15. End
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